Surveyors Guide

An essential guide for conservatory designers, surveyors and sales.

For more information visit our website at www.quantal.co.uk
Hotline: 0843 208 6930
Email: info@quantal.co.uk

Quantal Conservatory Roofing Systems – Our policy is one of continuous improvement and we reserve the right to change the specification and design at any time without prior notice.

Issue 3
This guide gives specific details on the Quantal system as well as general
details on base work layouts, calculations and window frames. There are
many aspects to surveying and it is the conservatory designer or
surveyor's responsibility to ensure the best design in terms of the
structure, the aesthetics and the installation for the site. There is no
definitive start point, but the most complicated aspect of the conservatory
is usually the roof and therefore should be the first consideration. A good
design eliminates additional costs, complexity and provides greater visual
appeal. A clear, precise and workable specification is vital to the
effectiveness of a project. An error in calculating an angle or size will lead
to delays in installation and add additional costs.
Suggested surveying tools: Spirit Level, Tape Measure, Angle Finder,
Plumb Line, Calculator, Camera.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Property</td>
<td>2</td>
</tr>
<tr>
<td>Walls and Soffits</td>
<td>3</td>
</tr>
<tr>
<td>Windows Frames / Structural Walls</td>
<td>4</td>
</tr>
<tr>
<td>Design Guide - Victorian</td>
<td>5</td>
</tr>
<tr>
<td>Design Guide - Edwardian</td>
<td>6</td>
</tr>
<tr>
<td>Design Guide - Combination</td>
<td>7</td>
</tr>
<tr>
<td>Base Details</td>
<td>8</td>
</tr>
<tr>
<td>Drainage Options</td>
<td>9</td>
</tr>
<tr>
<td>Roof size with End Frames</td>
<td>10</td>
</tr>
<tr>
<td>Base Calculations</td>
<td>11</td>
</tr>
<tr>
<td>String Lines</td>
<td>12</td>
</tr>
<tr>
<td>Calculating Ridge Lengths</td>
<td>13</td>
</tr>
<tr>
<td>Ridge Height Chart</td>
<td>14</td>
</tr>
<tr>
<td>LPR Ridge Height Chart</td>
<td>15</td>
</tr>
<tr>
<td>Profile Identification Chart</td>
<td>16</td>
</tr>
<tr>
<td>Glazing Recommendations</td>
<td>17</td>
</tr>
<tr>
<td>Glass Sizes</td>
<td>18</td>
</tr>
<tr>
<td>Structural Design Guidelines</td>
<td>19</td>
</tr>
<tr>
<td>Combination Roofs</td>
<td>20</td>
</tr>
<tr>
<td>Tie Bars – Combination Roofs</td>
<td>21</td>
</tr>
<tr>
<td>Sun Room</td>
<td>22</td>
</tr>
<tr>
<td>Patio / Bi-Fold Doors</td>
<td>23</td>
</tr>
<tr>
<td>Span Charts</td>
<td>24</td>
</tr>
<tr>
<td>Ventilation</td>
<td>25</td>
</tr>
<tr>
<td>Portal Frames</td>
<td>26</td>
</tr>
</tbody>
</table>
Existing Property

It is essential to check the existing property for existing features that may require addressing before or during installation. For example, these could include Water pipes, Gas Flues or overflow pipes.

To ensure the smooth and efficient installation we have highlighted some of the common situations that if ignored or are not taken into consideration could lengthen, delay or possibly stop the project at any stage.

A. Is the house wall level/parallel?
B. Is the house wall plumb?
C. Does the upper floor project further than the lower floor?
D. Are the house walls at 90˚ or does the property tapper in or out? Use Pythagoras Theorem to determine if walls are at 90˚. i.e. 3,4,5 Triangle or $a^2 + b^2 = c^2$ e.g. $3^2 + 4^2 = 5^2$. Note ($\sqrt{5^2} = 5$)
E. Will soil pipe obstruct proposed site?
 Will soil pipe obstruct any new openings?
F. Will any flue have sufficient clearance and not create any obstructions to proposed conservatory or conservatory openings?
G. Will overflow pipe have to be repositioned?
H. Will the existing opening from the house have sufficient clearance?
I. Will horizontal tie bar rod locate above existing opening and lintel?
 Will any conservatory openings obstruct any house windows?
J. Check soffit height from DPC is consistent?
 Is fascia height sufficient for wallplate or box gutter?
 Will existing guttering be removed or replaced?
 Is Soffit over hang consistent?
Walls and Soffits

To provide privacy from neighbours one or more of the walls could be heightened, if so consideration to the void created is required. On combination roofs the returns require thought to maintain the aesthetics and ensure the openings are unaffected. When box gutters and/or soffits are involved with the roof consideration must be given to the roof projection compared to the base projection and also rafter positioning.

1. Dual wall heights
 A. Wall height at 1500mm.
 B. Wall height at 600mm.
 C. A void is created by the width of the brick and cavity, which needs to be addressed

2. Corner return with opening.
 A. Leave sufficient space so the window cill does not obstruct the door to open.

3. Opening with two returns.
 A. The door opening will be less than the internal dimension between the two main due to cavity walls, i.e. internal dimension of 3 metres will reduce by the width of both external bricks. This will create two voids similar to 1C.
 B. Beware the projecting window cill could obstruct the doors from opening fully.

4. Box Gutters & Soffit.
 A. The roof projection will be reduced by the depth of the box gutter and/or Soffit.
 B. Consider the window frame spacings in relation to the roof spacings when a box gutter and/or a soffit situation arise. An option is to place a window frame or brick pier to fill this area.
 C. Soffit.
 D. Box gutter.
Windows Frames / Structural Walls

The structural integrity of the conservatory must not be reliant on the window frames alone, as PVC windows (even reinforced ones) are not designed to carry the dead load of the roof and the live loads of wind or snow upon it, which must be transmitted through structural mullions and corner/bay posts. Even a modest sized roof may have a weight of 0.5 tonnes (equivalent to 6 people standing on it) plus the imposed loads. Consideration of the other items below is also necessary at the surveying stage.

1. Frame coupling
 - A. On angled or gable frames it is recommended that the structural mullions be positioned vertically. Alternatively an Eaves Beam and Cill can be used across the front of the Gable.
 - B. It is also recommended to connect the frames with structural mullions evenly at approximately 2 metre intervals to avoid excessive pressure being applied to the window frames.

2. Window Cills
 - A. The window cill should be reinforced and contain a load bearing kit at each corner facet.
 - B. On longer facets additional kits are recommended at the position of the structural mullions.

3. Door positioning
 - A. Creates a corridor effect through the conservatory.
 - B. Optimise the floor area by positioning the doorway close to the house opening or doorway.

4. Rainwater pipe positioning
 - A. Positioning the rain water pipe from the box gutter over a window looks unsightly and the pipe could obstruct any openings.
 - B. At the house wall the pipe could obstruct the opening window. Use of a frame extension can alleviate this problem.
 - C. It is recommended that additional outlets are required over 33m² of roof area.
Design Guide - Victorian

When designing the roof, common facet sizes and angles will give improved looks, easier manufacture and installation. Similarly a common roof pitch to all roof sections will give an improved fit, finish and weathering.

The best conservatory roofs are symmetrical designs.

<table>
<thead>
<tr>
<th>PREFERRED DESIGN</th>
<th>LESS PREFERRED DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal facet sizes around the front bay.</td>
<td>Non equal facet sizes.</td>
</tr>
<tr>
<td>Standard 135° to all internal angles around the bay.</td>
<td>Non standard internal angles around the bay.</td>
</tr>
<tr>
<td>Equal pitches on all roof sections gives improved aesthetics.</td>
<td>Stretched ridge or unequal pitch can increase costs.</td>
</tr>
<tr>
<td>Rafter bar to rear of gallery gives equal glazing panels. Improved weathering to rear of gallery.</td>
<td>No bar to rear of gallery increases glazing costs especially to glass.</td>
</tr>
<tr>
<td>Use jack rafters when more than 9 bars to the gallery. Rafter bars are 90° in relation to eaves beam.</td>
<td>Avoid fanned rafters when more than 9 bars to gallery. Avoid fanned rafters as this increases costs.</td>
</tr>
<tr>
<td>Maximum 13 rafters to gallery area.</td>
<td></td>
</tr>
</tbody>
</table>

Issue 3.
Design Guide - Edwardian

When designing the roof, common facet sizes and angles will give improved looks, easier manufacture and installation. Similarly a common roof pitch to all roof sections will give an improved fit, finish and weathering. Jack Rafters will meet at the same point along the Hip Bar assuming common bar centre spacing.

The best conservatory roofs are symmetrical designs.

PREFERRED DESIGN

- Keep equal pitches on all roof sections.
- Keep the hips at a plan angle of 45°.
- Align jack rafters for improved aesthetics.
- Rafter bars are 90° in relation to the eaves beam.
- Rafter bar to rear of gallery gives equal panels and easier glazing. Ideally there should always be 1 bar to the ridge. Improved weathering to rear of gallery.
- No ridge provides easier assembly and structural stability.
- Minimum ridge length of 400mm allows cresting and improved aesthetics.
- If the ridge length is less than 400mm use Gazebo roof style.

LESS PREFERRED DESIGN

- Stretched ridge or unequal roof sections can increase costs. The hip does not sit over eaves corner correctly.
- Try to avoid fanned rafters as the rafter bar end caps are not parallel to eaves. Can increase costs. Maximum 13 rafters to gallery area.
- Jack rafters not aligned giving poor aesthetics.
- Minimum ridge length of 600mm. Ideally there should always be 1 glazing bar to the ridge. Tie Bar is required.
- Finials are too close together giving poor aesthetics and no cresting.
When planning combination roofs the same principles apply as outlined in the previous sections. It is best to design the roof for optimum glazing performance and considering the position of tie bars is essential. Please read this in conjunction with the Combination Roofs sections.

The best conservatory roofs are symmetrical designs.

PREFERRED DESIGN

- Rafter bars are 90° in relation to the eaves beam.
- Maximum 7 rafter bars to the corner.
- Minimum 400mm return from Victorian to lean-to. Good rafter position onto valley. Position for a tie bar.
- Optimum design as valley bar at plan angle of 45°. Ridge length 200mm greater than lean-to section.
- Pitch variance on either side of valley should be no more than 10° in glass and 15° in polycarbonate.

LESS PREFERRED DESIGN

- Rafters bar end caps not parallel to eaves.
- Maximum 7 rafters bars to corner. Sealed units are weak due to long slim lengths to a point.
- No return on valley gives poor rafter glazing at lower valley area. No position for a tie bar. Additional costs.
- Poor glazing performance on drop valleys. Increased time and cost with lead flashing.
- Unequal pitches on either side of valley. It is possible to have a greater variance but performance is reduced.
Base Details

Aesthetics, costs and ease of installation need to be considered when planning a conservatory against two host walls. Shown below are the preferred designs which lend themselves to ease of manufacture, quicker installation, improved aesthetics whilst keeping costs to a minimum.

PREFERRED DESIGN

A. Return base wall under the box gutter to avoid using a raised box gutter thus reducing costs. The panel under the box gutter gives an optimum position for the rain water pipe. Option to use a brick pier in place of a window frame/panel at this point.

LESS PREFERRED DESIGN

B. Raised or sloping box gutters increases costs, manufacturing and installation time.

C. Positioning frame as shown creates a void at house wall, making fixing difficult.

D. The overhang on the box gutter is uneven and looks unsightly. Roof facets and panels are unequal giving poor aesthetics.
Drainage Options

Additional Outlets are required when roof plan area exceeds 33m² based on 25° roof pitch. If the existing house roof is also to drain into the Box Gutter, this area must also be added to the total. Transport limitations prevent continuous Box Gutter lengths of over 7m. The Box Gutter would need splitting into two parts. These can be joined using an inline sealing pack or the split ends can be capped off and the water drain away from the split.

- **Standard Box Gutter**: Welded aluminium outlet on one end of Box Gutter and a welded adapter on the other. Plastic Guttering drains into the Box Gutter.
- **Split Box Gutters**: As above, but with split in Box Gutter. Box Gutter is split at 7m in length to allow for transportation. Transportation Size Restrictions: 7m in length x 2.3m in height.
- **Plastic Running Outlet**: Welded adapters on both ends of Box Gutter. Water drains into plastic guttering and into running outlets.
- **Box Gutter 3-Way Adapter**: Plastic Gutter runs into welded 3-Way Adapter on right hand side of Box Gutter.
- **Built up Box Gutter**: A Box Gutter Outlet can be at this point or alternatively drain into the outlet in the plastic gutter.
- **Inline Box Gutter**: Box Gutter inline adapter allows water to run into plastic gutter with outlet positioned on other facet.
- **Gable roofs**: Generally gable ended roofs require an outlet on either side, however gutter can be fitted around the front of the conservatory if a Gable Eaves Beam is run across the front of the gable.
Roof Size with End Frames

Generally, roofs are dimensioned on the survey to the internal window frame size. However, care needs to be taken on Lean-to roofs, combination and gable roofs where a common error is to forget that the roof carries over the end window frames by the profile thickness. Some favour an additional 5 or 10mm overhang to provide an improved seal.

1. Internal width is measured between:
 A. Frames on both ends. Add profile widths of both frames to gain overall roof width.
 B. Frame on one side only, add profile widths of one frame to gain overall roof width.
 C. No frames, roof between two walls. No profile width to be added so internal width will be overall roof width.

2. Profile dimensions
 A. Internal width to this point.
 B. Profile thickness/width.

3. Same principles apply to combination and gable roof styles.
Base Calculations

The following calculation methods give facet lengths assuming standard and common facet angles and pitches. To calculate combination roofs the same principles are applied by calculating the separate sizes then joining them together.

Standard 3 Facet Victorian 135° angles

\[
\begin{align*}
F_2 &= \frac{W}{2.4142} \\
Y &= \frac{F_2}{1.4142} \\
F_1 &= P - Y
\end{align*}
\]

Example: 3m x 3m

\[
\begin{align*}
1243 &= 3000 / 2.4142 \\
879 &= 1243 / 1.4142 \\
2121 &= 3000 - 879
\end{align*}
\]

Wide Front 3 Facet Victorian 135° angles

\[
\begin{align*}
Y &= \frac{W - F_3}{2} \\
F_2 &= \frac{Y}{1.4142} \\
F_1 &= P - Y
\end{align*}
\]

Example: 3m x 3m

\[
\begin{align*}
750 &= (3000 - 1500) / 2 \\
530 &= 750 / 1.4142 \\
2250 &= 3000 - 750
\end{align*}
\]

Standard 5 Facet Victorian 150° angles

\[
\begin{align*}
F_2 &= \frac{W}{3.733} \\
Y &= \frac{F_2}{2.734} \\
F_1 &= P - Y
\end{align*}
\]

Example: 3m x 3m

\[
\begin{align*}
804 &= 3000 / 3.733 \\
1098 &= 3000 / 2.734 \\
1921 &= 3000 - 1098
\end{align*}
\]

Wide Front 5 Facet Victorian 150° angles

\[
\begin{align*}
Y &= \frac{W - F_3}{2} \\
F_2 &= \frac{Y}{0.7325} \\
F_1 &= P - Y
\end{align*}
\]

Example: 3m x 3m

\[
\begin{align*}
750 &= (3000 - 1500) / 2 \\
549 &= 750 / 0.7325 \\
2250 &= 3000 - 750
\end{align*}
\]

Two Facet Victorian End 150° angles

\[
\begin{align*}
Y &= W - F_3 \\
F_2 &= \frac{Y}{0.7325} \\
F_1 &= P - Y
\end{align*}
\]

Example: 4m x 3m

\[
\begin{align*}
1500 &= 4000 - 2500 \\
1098 &= 1500 / 0.7325 \\
1500 &= 3000 - 1500
\end{align*}
\]

One Facet Victorian End 135° angles

\[
\begin{align*}
Y &= W - F_3 \\
F_2 &= \frac{Y}{1.4142} \\
F_1 &= P - Y
\end{align*}
\]

Example: 4m x 3m

\[
\begin{align*}
1500 &= 4000 - 2500 \\
1098 &= 1500 / 1.4142 \\
1500 &= 3000 - 1500
\end{align*}
\]
String Lines

The use of string lines is paramount when constructing the foundations, the walls and during installation. When used from both corners of the proposed site this will confirm the first 'P' projection facets are 90 degrees from the existing property and the other facets are located correctly. A basic knowledge of trigonometry will allow you to calculate these dimensions however software packages are readily available.
Calculating Ridge Lengths

Use this section in conjunction with the design guide sections to obtain the most cost effective and aesthetically pleasing solution. All calculations shown are to obtain equal pitches to all roofs sections.

\[R = P - \frac{1}{2} W \]

EXAMPLE: 4m x 3m

\[R = 2500 - 1500 \]

\[R = 1000 \]

\[\]
Ridge Height Chart

Charts below show pitch related heights for standard ridged roofs and variable wallplate lean-to roofs. To calculate an overall height use the figure within the chart and the picture below, then make the relevant additions to achieve desired figure.

Pitch Ranges:
All roof styles with a ridge and gallery are from 15˚ to 37.5˚.
Lean-To roofs are from 5˚ to 40˚.
Gable roofs are from 15˚ to 40˚.

Note:
Standard Cresting = 178mm.
Britannia Cresting = 98mm.

PITCH RANGES	ALL ROOF STYLES WITH A RIDGE AND GALLERY	FROM 15˚ TO 37.5˚
PITCH RANGES	LEAN-TO ROOFS	FROM 5˚ TO 40˚
PITCH RANGES	GABLE ROOFS	FROM 15˚ TO 40˚

PITCH RANGES	15˚	22.5˚	25˚	27.5˚	30˚	32.5˚	35˚	37.5˚												
PITCH RANGES	3000	3250	3500	3750	4000	4250	4500	4750	5000											
PITCH RANGES	INTERNAL ROOF WIDTH (mm)	15˚	22.5˚	25˚	27.5˚	30˚	32.5˚	35˚	37.5˚											
PITCH RANGES	15˚	22.5˚	25˚	27.5˚	30˚	32.5˚	35˚	37.5˚												
PITCH RANGES	3000	3250	3500	3750	4000	4250	4500	4750	5000											
PITCH RANGES	INTERNAL ROOF PROJECTION (mm)	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40	42.5	45	47.5	50
PITCH RANGES	15˚	22.5˚	25˚	27.5˚	30˚	32.5˚	35˚	37.5˚												
PITCH RANGES	3000	3250	3500	3750	4000	4250	4500	4750	5000											
PITCH RANGES	INTERNAL ROOF PROJECTION (mm)	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5	40	42.5	45	47.5	50
LPR Ridge Height Chart

The chart below shows projection related wallplate heights at host wall for the Uni Wallplate LPR product.
The Quantal roof system is aluminium powder coated externally and PVC-U clad internally in a range of standard finishes and bespoke colour finishes.

<table>
<thead>
<tr>
<th>External</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>RAL 9003</td>
</tr>
<tr>
<td>Grey</td>
<td>RAL 7016</td>
</tr>
<tr>
<td>Dark Brown</td>
<td>RAL 8016</td>
</tr>
<tr>
<td>Oak</td>
<td>RAL 8003</td>
</tr>
</tbody>
</table>

Quantal Conservatory Roofing Systems

Issue 2 Nov 2013

Please note this chart and all information provided is for identification purposes only. All profile drawings are nominal. DO NOT SCALE.

Quantal Conservatory Roofing Systems has a policy of continuous improvement and we reserve the right to change the specification and design at any time without prior notice.
Glazing Recommendations

Basic roof parameters are shown below as a guide to assist during survey. Please refer to the Glazing Bar Design Guide for clarity on maximum glazing bar centres in relation to site location and glazing material used.

<table>
<thead>
<tr>
<th>Roof Style</th>
<th>Pitch Range</th>
<th>Glazing Material</th>
<th>Glazing Thickness - mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPR Lean-To</td>
<td>2.5˚-15˚</td>
<td>Polycarbonate</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5˚ - 15˚</td>
<td>Glass</td>
<td>-</td>
</tr>
<tr>
<td>Standard Lean-To</td>
<td>5˚ - 40˚</td>
<td>Polycarbonate or Glass</td>
<td>6</td>
</tr>
<tr>
<td>3 Bay Victorian</td>
<td>15˚ - 37.5˚</td>
<td>Polycarbonate or Glass</td>
<td>6</td>
</tr>
<tr>
<td>5 Bay Victorian</td>
<td>15˚ - 37.5˚</td>
<td>Polycarbonate or Glass</td>
<td>6</td>
</tr>
<tr>
<td>Edwardian</td>
<td>20˚ - 30˚</td>
<td>Polycarbonate or Glass</td>
<td>6 (Variable Hips)</td>
</tr>
<tr>
<td>Gable</td>
<td>15˚ - 40˚</td>
<td>Polycarbonate or Glass</td>
<td>6</td>
</tr>
<tr>
<td>Valley</td>
<td>5˚ - 40˚ (Up to 15˚ Pitch Difference)</td>
<td>Polycarbonate or Glass</td>
<td>6</td>
</tr>
</tbody>
</table>
Glass Sizes

There are manufacturing size limitations when it comes to glass. If these limitations are exceeded the glazing panel will need to be split into more manageable pieces and joined using our aluminium glass joiner and sealed using silicone.

Maximum Length $\leq 3.2\text{m}$

Maximum Area $\leq 2.4\text{m}^2$

Area of Triangle = $\frac{(W \times L)}{2}$
Structural Design Guidelines

The ability to structurally prove the conservatory roof is essential and the ability to demonstrate this to the homeowners using front end software should be a powerful part of an installation company's sales presentation. The government, although abandoning plans (for now) to re-introduce Building Regulations, has raised the bar by introducing more onerous wind loadings in the shape of British Standard BS 6399.

The old loadings standard, Code of Practice (CP3), will gradually fade from the scene and whilst most conservatories fall outside of the scope of Building Regulations, we fully expect motivated professional home improvement companies to have adopted the standard. Glass and Glazing Federation (the main representative body for our industry) members have to comply whilst some trade partners have adopted it as a voluntary code.

The days of designing for a universally applied load (typically 0.6kN/m² snow load, equivalent to 2 ft of snow), are dead and buried. Using Quantal's U-Design software trade partners, enter a site postcode and the software checks the Building Research Establishment Database, checking wind speed, altitude and whether the location is an urban, coastal or rural area (to assess the degree of exposure) before working out the final roof loading.

The software simultaneously prices the roof to the correct specification for the location of the conservatory. It should be remembered that there is a modest additional charge for designing the roof to meet loading over 0.6. Some retailers just price for the basic loading which would mean that in effect some roofs may not be fit for purpose for large parts of the country. Always provide the postcode to ensure that the roof is designed and specified to be fit for its location.
Combination Roofs

Use this section in conjunction with the design guide section. All combination roofs require a minimum of one 3 way tie bar across the bay of the Victorian/Edwardian.

A. During the design consideration to the location of the tie bar, as shown. Best design allowing tie bar to be located in the optimum position.
B. Ridge length is required to be 200mm greater than the lean-to projection.

C. Return from the Victorian/Edwardian to the lean-to requires a minimum of 400mm to allow for correct glazing around the valley. However design shown does not accommodate positioning of the tie bar.

Options:
1. Reduce lean-to projection.
2. Increase Victorian/Edwardian Bay projection as shown in option B.

D. No return from the Victorian/Edwardian to the lean-to can be accommodated, however design shown gives reduced glazing performance at the valley section to eaves and also does not accommodate positioning of the tie bar.

Options:
1. Use of tie bars only.
2. Use of structural steel or aluminium supports to replace tie bar arrangement.
3. Change design as shown in option B.
Tie Bars – Combination Roofs

Roof tie bars are specified to support the roof structure under extreme loading conditions. To be effective they should ideally be positioned perpendicular to the ridge to the inner valley corner so as to prevent the valley corner from moving. In all cases it is assumed that the structural integrity of the wall or window frames is adequate to support the dead load imposed by the roof.

All ‘P’ Shaped designs require a minimum of two 3 way tie bars to link the eaves beam to the lean-to portion to the side eaves beam of the Victorian/Edwardian element.
The Livin Room is available in internal soffit projections from 300mm to 1200mm (measured from internal frame). The product has 2 options, ‘On Fascia’ and ‘Below Fascia’ (which requires a frame add on but allows the framework and plasterboard to go under the boxgutter).
Patio / Bi-Fold Doors

Wide spanning doors have no integral strength and are very susceptible to vertical movement which can hinder operation. Additional support is required to span the opening and can be achieved using various methods.

Option 1 - Standard Eaves Beam

For shorter spans our standard Box Gutter Eaves Beam will suffice. Please refer to the tables for span capability.

Option 2 - Reinforced Eaves Beam

For larger spans the Standard Eaves Beam can accommodate a bolster section which carries the Heritage cladding. Please refer to the tables for span capability.

Option 3 - Steel Structure.

If a greater span is required, a steel structure can be erected inside the conservatory behind the Eaves Beam. Please note, there are aesthetic compromises, increased complexity and greater cost implications with this option. Please refer to the pictures for options. Please contact Quantal for assistance if this is required.
Issue 3.

Page 24

Span Charts

- Imposed Load = 0.6 kN/m².
- Roof Pitches = up to 15° for monopitch, up to 25° for duopitch and hip/gable.
- A wind load check must also be carried out on gable eaves beams over 3.90m.
- 5mm of deflection under maximum load which must be confirmed as acceptable by the fold door supplier. This information relates to bottom rolling Bi-Fold doors only (i.e. self weight of doors not included).
- Suitable lateral and vertical support must be provided within window/wall structure at the edge of the opening by the conservatory designer / retailer to support the eaves beam.
- Quantal cannot accept responsibility for the overall stability of the conservatory unless a portal frame is supplied by Quantal.
- Beyond this guidance refer to Quantal Technical Dept.
Ventilation within conservatories is paramount. During the winter months a controlled environment is required to minimise humidity and prevent condensation. During the summer months a build up of heat can render the conservatory unusable, so some method of temperature/humidity control becomes essential. A north facing conservatory will require openings of a minimum of 15% of the floor area and a south facing conservatory 25%. Natural ventilation through roof vents is the most cost effective and traditional form.

1. **Roof Vents**

 Roof vents are designed to allow the heat within the conservatory to escape.

 A. The vent performance is enhanced if used in conjunction with an internal paddle fan fitted to the roof ridge.

 B. The top of the vent should be positioned 200mm from the top of a rectangular panel. This allows the roof vent lid to be removed from inside of the conservatory and allow access for cleaning. Minimum lower panel size of 80mm (including stepper).

 There are various opening mechanism options available:

 2. Teleflex which operates with conduit running from the vent to a handle mounted on the wall.
 3. Electric, with options of a wall mounted switch through to a fully automated system controlled by rain, temperature and humidity sensors.

2. **Paddle Fans**

 A. Fans come in a variety of designs with different blade size options. Position to avoid the blades coming in contact with the glazing rafters or tie bars. Split Tie Bars are an option if this is the case. The fan will disrupt the air and assist the air to rise through the roof vent.

 B. It is recommended to fit the fan to the ridge body with a "Fan Bracket" and not to the gallery as the oscillation by the fan can cause seals to break down over time.

3. **Ventilated Glazing Support**

 Ventilated glazing supports can be specified at various positions around the eaves beam (between bars) on the roof. These 'trickle' vents allow the homeowner to control this ventilation (open or closed).
Portal Frames

In some instances a steel portal frame is required to support the conservatory roof or supporting walls. This could be due to the size, shape, position or site condition of the conservatory structure. The portal is positioned inside the conservatory structure so it can push or rest upon the portal. The conservatories are individually reviewed and assessed by Quantal Engineers.

The presence of a portal frame will require additional groundwork/site preparation in order to adequately provide support for the portal frame.

Note.

The Steel Portal is made from Steel Rectangular Hollow Section S275 material. It will be split into manageable pieces and bolted together on site. Please note, a relatively small Portal structure could easily weigh in excess of 200 Kg.

There are a range of finishes which can be specified such as Red Oxide, Galvanise or Powder Coat depending on site requirements. The Steel Portal is spaced off the Conservatory Structure by 5mm to allow for site variation/adjustment and to aid in the prevention of thermal transfer. Spacer material not supplied.

The Portal must be bolted to a suitable conservatory foundation as shown below. If the Portal is to be bolted to a vertical wall, a 400 x 400mm (min) load bearing concrete pad should be specified in the wall cavity. The foundation size and depth is site specific and would need to be assessed by a suitably qualified Geotechnical Engineer. This information is for guidance only. Individual installations may have different requirements.
Quantal Conservatory Roofing Systems – Our policy is one of continuous improvement and we reserve the right to change the specification and design at any time without prior notice.

Issue 3